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ABSTRACT

The trajectory of a hydraulically driven crack
near natural fractures, faults, and inhomo-
geneities has been studied using the complex
variable hypersingular boundary element tech-
nique. The crack trajectories are presented
for the cases of an oblique and a steeply in-
clined fault. It has been demonstrated that
natural fractures, faults, and other inhomo-
geneities generate unstable fracture conÞgura-
tions which can transform signiÞcantly under
small disturbances of the initial crack incli-
nation, loading, and geometry. The mutual
inßuences of a propagating crack, a fault, and
material inhomogeneity are also discussed.

INTRODUCTION

Hydraulic fracture growth in naturally frac-
tured rock is an important issue for geother-
mal energy extraction. Particularly when deal-
ing with enhanced geothermal systems. It is
of great interest to know when a fracture be-
gins to grow, what is the direction of crack
propagation, and how will the propagating
fracture interact with natural discontinuities?
What would be the magnitude of shear slip
on the natural fracture (if any) and how will
the slip impact fracture permeability? And
Þnally, will the fracture cross existing discon-
tinuities or will it be terminated? Answers to
these questions can assist in assessing the out-
come of hydraulic fracture stimulation prac-
tices in geothermal reservoirs. In search for
answers to these questions, one must deal with
numerous factors making the problem rather
complicated. Thus, we are developing a model
capable of dealing with crack propagation near
natural discontinuities such as joints and faults.
The complex variable boundary element method
(CV-BEM) has proven to be the more effec-
tive instrument in fracture studies mainly be-
cause it provides a higher accuracy and re-
duces the problem dimensionality by one (thus,
for example, a 3D problem is solved in 2D).

Whereas previous studies (Linkov and Mogi-
levskaya, 1998; Mogilevskaya, 1997) require
introduction of a modiÞed incremental proce-
dure for choosing the direction of crack growth;
we exploit the method developed by Dobroskok
(2001).

Fracture Propagation Scheme

Consider a crack emanating from a wellbore in
the vicinity of a fault (Figure 1). The radius
of the wellbore is R; the crack has an initial
length ` and makes an angle of α with the
y-axis. The distance from the center of the
wellbore to the fault is d, the angle of the
fault with the y-axis is φ, and the fault has
a length of 20R. When considering a crack
without the wellbore, the fault length is ten
times the length of the initial crack.

It is further assumed that the initial crack
is small enough not to propagate if it and the
wellbore are not internally pressurized (p =
0). Then, the pressure p increases from zero
up to the value sufficient for crack propaga-
tion in mode I in accordance with the criterion
KI = KIC . The problem is reduced to Þnding
the crack trajectory, displacement discontinu-
ities, and the tractions on the fault surface
given that (i) σH and σh are prescribed at in-
Þnity, (ii) fracture propagation is governed by
the condition KI = KIC , and (iii) the condi-
tion on the fault is speciÞed.

We described the fault by Coulomb�s law
with cohesion c and a friction angle ρ. If the
normal traction on some part of the fault be-
comes tensile due to the inßuence of the ap-
proaching crack, the tractions are set to zero
on that part to reßect its opening. When
searching for the crack trajectory in the close
vicinity of a fault, a more general concept of
interaction between the fault surfaces should
be considered to include fault cohesion and its
deterioration under loading. In this way, the
stress is redistributed due to the approach-
ing fracture and the growing load so that the
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fault gradually is transferred into a sliding
state. However, to evaluate the role of fric-
tion, we consider examples using the cohesion-
less Coulomb�s relation:

σnt = f · σnn ∆ut
| ∆ut | (1)

where σnt and σnn are tangential and normal
tractions on the fault surface, ∆ut is the tan-
gential displacement discontinuity; f = tan ρ,
where ρ is the friction angle. This condition
refers to the limiting case when the whole
fault is in the plastic state.

Using the CVH-BEM algorithm described
in Dobroskok (2001), we automatically calcu-
late both the crack path and changes on the
fault surfaces. In most of the examples we
consider the fracture faces is loaded by a ßuid
pressure (this is the case of slow pressuriza-
tion). For the fast pressurization case we as-
sume closed fracture surfaces (practically, this
means that |∆un| ¿ |∆ut|) only the tip ele-
ment is open, and the fracture faces are fric-
tionless: |σnt| ¿ |σnn|. We suppose that the
length of the preexisting fault or joint and its
inclination are known in advance. For a nat-
ural fault we use the same type of boundary
conditions as for a rapidly pressurized cracks.

APPLICATIONS

We Þrst consider the trajectory of an isolated
crack and investigate the dependence of the
fracture trajectory on the angle α measuring
the inclination of the preexisting crack rela-
tive to the vertical axis or the direction of the
maximum principal stress at inÞnity. Then,
we will study its behavior near a fault (Fig-
ure 1). For the isolated crack problem we
consider the crack half-length to be ` = 0.16
m and assume that KIC = 2 MPa

√
m, and

σH = 12 MPa, σh = 10 MPa. When consid-
ering the wellbore/crack problem we assume
that `

R = 0.1 and deÞne a dimensionless pa-

rameter β = (σH−σh)
√
R

KIC
controlling the frac-

ture path (Mogilevskaya et al., 2000). In both
problems, the ßuid pressure is allowed to in-
crease until the critical condition KI = KIC ,
thereafter it is kept constant during the frac-
ture propagation.

It can be seen in Figure 2 that as expected,
the isolated crack turns in the direction of

maximum in-situ stress. This example dealt
with the simplest case of an unstable crack
conÞguration and the results could be expected
by taking into account the symmetry of the
geometry and the loading conditions.
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Figure 1: Problem geometry for fracture prop-

agation from a wellbore in the vicinity of a

fault.
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Figure 2: The trajectories of and isolated

cracks under ßuid pressure (slow rate of load-

ing.

Interaction of a Crack and a Fault

Fracture propagation near a natural discon-
tinuity is an important problem in modeling
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hydraulic fracture propagation in a reservoir
with natural fractures. However, the mod-
eling approach in Linkov and Mogilevskaya
(1998) cannot be used to treat this problem;
we use a different numerical approach to ad-
dress two non-linear effects namely, changes in
geometry caused by the growing cracks and ir-
reversible deformations on the fault surfaces.
These effects are simultaneously accounted for
by using a method discussed in Dobroskok
(2001). This method has been implemented in
CVBEM of Linkov and Mogilevskaya (1998)
and is used herein.

Again, we deÞned β = (σH−σh)
√
d

KIC
with

d = 1.5`
√
2, consider σH and σh to be con-

stant, and increase the ßuid pressure up to
a critical value to satisfy the condition KI =
KIC . For the examples of this section we let
KIC = 2MPa·√m, σH = 12 MPa, σh = 10
MPa, and consider frictionless sliding of the
fault. The initial fracture half-length is as-
sumed to be ` = 0.56 m and ` = 0.06 m in the
different cases that follow.
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Figure 3: Fractures trajectories in close vicin-

ity of a fault (β = 1.19).

Figures 3-7 illustrate the simulation re-
sults for a crack propagating in the vicinity of
a fault. It is evident that the fault, as a surface
with discontinuity of tangential displacement
(slip) modiÞes the stress Þelds near the crack
tip and the crack opening. Therefore, we ob-
serve deßections of the fractures trajectories
from the direction of maximum far-Þeld stress
when they approach the fault. Figure 3 corre-
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Figure 4: Fractures trajectories in the close

vicinity of a steeper fault (` = 0.56 m).
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Figure 5: The role of initial crack length (` =

0.06 m).
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sponds to a fault that is inclined to the y-axis
by an angle ϕ = 450. We see that the frac-
ture trajectories change considerably due to
the presence of the fault. There is no tendency
for them to turn towards the y-axis (compare
with Figure 2). The next example (Figure
4) illustrates the role of the steepness of the
fault. Now ϕ = 180, and the shear stresses
induced by the fault become more important.
For some initial cracks, the possibility of inter-
secting the fault is reduced. One can observe
that there is an angle α∗ (750 < α∗ < 900)
which determines the unstable crack conÞgu-
ration; for α = α∗, small disturbances of the
parameters lead to a sharp deßection of the
propagation trajectory.

Figure 5 demonstrates the inßuence of the
preexisting crack length. We have the same
angle ϕ = 180 as in the previous case. De-
creasing the crack length and increasing the
distance to the fault accentuates the impact
of the in-situ stress contrast, however, there
are no essential changes in the cracks� behav-
ior.
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Figure 6: Trajectories for a modiÞed stress

contrast σH − σh = 6 MPa, ` = 0.56 m (com-

pare with Figure 4).

The next two series of graphs (Figures 6-7)
depict the trajectories corresponding the case
of (σH −σh) = 6 MPa. The other parameters
are equal to those of the previous cases (Fig-
ure 4 and Figure 5). As expected, the essential
difference consists only in sharper turning of
the trajectories when (σH − σh) is larger. It
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Figure 7: Trajectories near a steeper fault

with σH − σh = 6 MPa, ` = 0.06 m (com-

pare with Figure 5).

should be noted that if we change the direc-
tion of σH and σh, in the case of ϕ =450, the
complete scheme, and as a result the trajecto-
ries, rotate by an angle of 900. For the case of
ϕ=18 one can expect that the cracks will more
readily follow the far-Þeld stress direction.

The Influence of Friction Figures 8-9 de-
pict the results of modeling the trajectories
near a frictional fault whose surfaces experi-
ence sliding. The friction parameter f is equal
to 0.5 and 2, respectively. The geometric fea-
tures of the propagation scheme are the same
as that in Figure 4. We see that the friction
leads to the rotation of the trajectories to-
wards the x−axis promoting intersection with
the fault. Also, the critical inclination angle
of the preexisting crack is more than that in
the frictionless case; 82.50 < α∗ < 900 for
f = 0.5.

It should be mentioned that the effects of
sliding strongly depend on the angle ϕ and
the ratio σH

σh
. The elementary static analysis

leads to this conclusion. In the case of sym-
metry when ϕ = 00 or 900 and the fracture
propagates normal to the fault, there is no
sliding at all.
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Figure 8: The effect of friction (small friction

angle).
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Figure 9: The effect of friction (larger friction

angle).

Crack Emanating from a Wellbore

Now we modify the schemes of the previous
section and consider the wellbore explicitly in
the crack and fault interaction problem (Fig-
ure 1). Again, we vary the inclination of a
preexisting crack relative to the vertical, α,
and assume the wellbore radius is R = 0.1 m,
` = 0.01m, KIC = 0.5MPa·m 1

2 ; and σH = 22
MPa, σh = 11 MPa. The ßuid pressure is al-
lowed to increase until the critical condition
KI = KIC . Figures 10-11 illustrate the cracks
trajectories near a fault under the same load-
ing path as in Figure 3 and 4, respectively. As
a result, new trajectories deviate more notice-
ably near the well and turn to become oriented
parallel to the fault (the dashed lines illustrate
the crack paths when no fault is present). In-
tersection with the fault is not promoted for
initial cracks that are not sub-parallel to the
x−direction. However, as shown in Figure 12,
when the wellbore is rapidly pressurized the
cracks tend to follow their initial direction and
possibly intersect the fault.
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Figure 10: Crack propagation from wellbore

near fault, (β = 3.95).
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Figure 11: Crack emanating from a wellbore

near a steep fault, β = 3.95.
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Figure 12: Fast pressurization rate, with

σH = 15 MPa, σH = 10, MPa, KIC = 2

MPa·m 1
2 (β = 0.79).

A Fracture Near Inhomogeneities

The general features of cracks trajectories near
inclusions have been studied rather well (Mogi-
levskaya et al., 2000). We now study the com-
bined inßuence of two factors: rigidity of a
seam-like inhomogeneity and sliding effects at
the interface. Figure 13 presents a scheme
of the crack approaching the interface. We
model an inhomogeneous structure by two rec-
tangular blocks whose lengths are ten times
the initial crack length (so that we exclude
the effect of block size). As in the previous
sections we consider the crack growth under
internal loads (slow pressurization mode) and
Þxed the in-situ stresses. We suppose that
the crack starts from the �lower� layer with
the Young�s modulus E2 and Poisson�s ratio
ν2 and approaches the �upper� layer charac-
terized by E1 and ν1. The layers (blocks) are
imbedded in an inÞnite elastic domain with
E0, ν0.

E1, ν1 

 E 0 , ν 0  

E2, ν2 

Figure 13: A hydraulic fracture approaching

an interface between layers having different

moduli.

Bellow we consider the combinations of
two factors: (i) the relative rigidity of the
blocks: rigid upper block, E1

E2
= 3 and softer

upper block, E2
E1

= 3; (ii) the conditions on
the contact between blocks: (a) full cohesion
and (b) frictionless sliding. All examples re-
fer to the case where E1 = E0 and ν1 =
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Figure 14: Fractures behavior near the soft

layer; interface has perfect cohesion.
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Figure 15: Fractures behavior near the rigid

layer; interface has perfect cohesion.

ν2 = ν0 = 0.3. The present problem geom-
etry is the same as on the Figure 3; with
ϕ = 450; d = 1.5`

√
2. The coordinate axes co-

incides with the directions of the main in-situ
stresses. We remind the reader that every Þg-
ure presents a number of fracture paths differ-
ing by the inclination of the preexisting crack.

Figures 14-15 illustrate the role of rigid-
ity of the layers with perfect cohesion at their
interface. One can see that a softer �upper�
layer leads to a repelling effect for some ini-
tial crack orientations (Figure 14). The case
of the rigid �upper� layer (Figure 15) demon-
strates behavior opposite to that of a soft one.
Overall, the rigid layer appears to attract the
cracks to the interface.

The sliding in the case of the soft upper
block (Figure 16) leads to an ampliÞcation of
the repelling. For the case of the rigid upper
block (Figure 17) there is a slight attracting
effect. However, in both cases repelling may
be manifest in very close vicinity of the inter-
face. This issue needs to be studies further.
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Figure 16: Effect of sliding of the softer layer.

SUMMARY AND CONCLUSIONS

The Complex Variable Hypersingular Bound-
ary Element Method has been used for study-
ing hydraulic fracturing near natural fractures,
faults, and inhomogeneities. We have demon-
strated that natural fractures, faults, and other
inhomogeneities generate unstable fracture con-
Þgurations which can transform signiÞcantly
under small disturbances of the initial crack
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Figure 17: Effect of sliding of the more rigid

layer.

inclination, loading, and geometry. The fault
inclination and frictional characteristics as well
the conditions on the fracture surfaces proved
to be the most signiÞcant factors that inßu-
ence the trajectories. A number of examples
illustrate a variety of fracture behavior near
a natural discontinuity such as a fault. For-
mulation and solution of the fracture arrest or
�jog� at the interface should follow the analy-
sis of the fracture trajectory once it is de-
termined whether it is attracted or rejected
by the interface. Future improvements should
address a more general concept of interaction,
i.e., consideration of the successive process of
loss of cohesion on the fault surface as the
fracture propagates towards it. Also, special
asymptotics need to be implemented near the
tip depending on the interface characteristics
near the tip.
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