ESTIMATION OF MATRIX BLOCK SIZE DISTRIBUTION IN NATURALLY FRACTURED RESERVOIRS

A Report Submitted to the Department of Petroleum Engineering of Stanford University in Partial Fulfillment of the Requirements for the Degree of Master of Science.

by
Ashok Kumar Belani
August 1988
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>2 ABSTRACT</td>
</tr>
<tr>
<td>3 INTRODUCTION</td>
</tr>
<tr>
<td>4 LITERATURE REVIEW</td>
</tr>
<tr>
<td>5 MODEL FORMULATION</td>
</tr>
<tr>
<td>6 SOLUTION</td>
</tr>
<tr>
<td>7 UNIFORM DISTRIBUTION</td>
</tr>
<tr>
<td>8 BIMODAL DISTRIBUTION</td>
</tr>
<tr>
<td>9 DISCUSSION</td>
</tr>
<tr>
<td>10 CONCLUSIONS</td>
</tr>
<tr>
<td>11 NOMENCLATURE</td>
</tr>
<tr>
<td>12 BIBLIOGRAPHY</td>
</tr>
<tr>
<td>A SOLUTIONS</td>
</tr>
<tr>
<td>B SOFTWARE PROGRAMS</td>
</tr>
</tbody>
</table>

1 | 2 |
2 | 3 |
3 | 4 |
4 | 5 |
5 | 8 |
8 | 10 |
10 | 12 |
12 | 14 |
14 | 15 |
15 | 18 |
18 | 19 |
19 | 22 |
22 | 25 |
25 | 29 |
1 ACKNOWLEDGEMENTS

I sincerely thank my research advisor, Y. Jalali-Yazdi for his able guidance and patient help during the course of this research work and during the preparation of the Report. I have enjoyed working with him.

I thank also the Faculty, students and staff of the Petroleum Engineering department for the numerous discussions I had on subjects related to the study.

Finally, I thank Schlumberger for having provided partial support for my Master’s program at Stanford.
2 ABSTRACT

Interporosity flow in a naturally fractured reservoir is modelled by a new formulation incorporating variability in matrix block size. Matrix block size is inversely related to fracture intensity. The size of matrix elements contributing to interporosity flow is expressed as a distribution in the source term of the diffusivity equation. The pressure transient response for uniform and bimodal distributions of block size is investigated. Both pseudo-steady state and transient models of flow are analysed. It is shown that features observed on the pressure derivative curve can yield the parameters of the distribution. Thus, observed pressure response from fractured reservoirs can be analysed to obtain the matrix block size distribution in the volume of the reservoir investigated by the test.

The solution to the uniform distribution can be extended to more general distributions. Other sources of information, like logs and geological observations, can give an estimation of the shape of the distribution, and this model can be used to compute the reservoir parameters.
3 INTRODUCTION

Flow tests in naturally fractured reservoirs have been analysed using a continuum approach to model the reservoir, i.e., matrix and fracture systems are assumed continuous throughout the formation. The rock matrix has a very low permeability but stores most of the reservoir fluid in its intergranular porosity. The fracture system, on the other hand, has an extremely low porosity but provides the path of principal permeability.

When a well located in such a reservoir is produced, a rapid pressure response occurs in the fracture network due to its high diffusivity. This creates a pressure difference between the matrix and the fractures, which begins to deplete the fluid from the matrix, commonly termed as interporosity flow. As flow progresses, pressures in the matrix and the fractures equilibrate and the fracture flow response is observed again, with fluid now coming from a composite storativity of the matrix and the fractures.

The interaction between the matrix and the fractures is affected strongly by the geometrical distribution of the fractures. The parameters used to characterise this interaction are \(\omega_m \), matrix storativity ratio, which specifies the relative fluid distribution, and \(X \), the interporosity flow coefficient, which lumps the effects of the flow properties of both media and their geometry. Matrix flow can be modelled as pseudo-steady state (PSS) or unsteady state (USS).

Models available in the literature assume fracturing is uniform and hence matrix block size is constant. Geologic studies have shown nonuniformity in fracture intensity in many reservoirs, from very severe fracturing to very sparse fractures. Hence, it is necessary to model variability in flow contribution from matrix elements or blocks, depending on their size.

The evolution of the double porosity model is explained in the next section.

This work is the development of a robust and general fractured reservoir model allowing any distribution of matrix block size. Matrix block size distribution affects the pressure response significantly. The sensitivity of the pressure response is studied for the uniform and bimodal distributions and parameter estimation is discussed.
4 LITERATURE REVIEW

The double porosity concept was introduced in 1960 by Barenblatt et al.\(^4,5\) As explained before, it assumed the existence of two porous regions of distinctly different porosities and permeabilities within the formation. Also, a continuum was assumed, where any small volume contained a large proportion of both media. Hence each point in space had associated with it two pressure values, \(P_f\) in the permeable medium and \(P_m\) in the porous, less permeable medium. Interporosity flow was assumed to occur in pseudo-steady state condition,

\[
q = \frac{2}{\mu}k_m(P_m - P_f)
\]

The solution was completed in 1963 by Warren and Root\(^6\) who described the reservoir geometry as an orthogonal system of continuous, uniform fractures, each parallel to the principle axis of permeability. Two parameters were defined to characterize the double porosity behaviour:

- The inter-porosity flow coefficient:

\[
\lambda = \alpha \frac{k_m r_w^2}{k_f}
\]

where \(k_f\) is the fracture permeability, \(r_w\) the wellbore radius and \(\alpha\) a geometrical factor with dimensions of reciprocal area.

- The fracture storativity:

\[
\omega_f = \frac{\phi_f C_f}{\phi_fm C_m + \phi_f C_m}
\]

where \(\phi_f\) is the fracture porosity, \(\phi_m\) the matrix porosity and \(C_f\) and \(C_m\) the corresponding fluid compressibilities.

Pseudo-steady state flow was assumed for the matrix as a suitable approximation for late time data. The results were analysed on semilog plots, characterizing the interporosity flow region for different values of \(X\) and \(w\).
\[F_{D*} = \frac{K_0(s)}{s \mu K_1(s)}, \]

where \(x = \sqrt{s f(s)} \), and

\[f(s) = \frac{\omega(1-\omega)s + \lambda}{(1-\omega)s + \lambda}. \]

Odeh16 suggested in 1965 that wellbore storage effects dominated pressure response at early times, and hence the first straight line may not be observed.

Kazemi18 (1969) and De Swaan17 (1976) removed the pseudo-steady state assumption and numerically solved the transient problem for flow from matrix to fractures. Kazemi also considered flow directly from the matrix to the wellbore and concluded that the results showed insignificant difference.

Kazemi also applied the solution to interference tests, solving the equation both analytically and numerically.

Mavor and Cinco18 added wellbore storage and skin to the pseudo-steady state flow solution of Warren and Root.

In 1980, Najurieta10 proposed an approximate solution for the equation presented by De Swaan. The time domain approximation was of the same form as the homogeneous reservoir solution. It presented a way to group parameters to facilitate the solution of the inverse problem.

Type curves for analysing wells with wellbore storage and skin in double porosity reservoirs were introduced by Bourdet and Gringarten.10 It was claimed that even in the absence of the first straight line on the semi-log plot, a log-log type curve analysis could yield all reservoir parameters. Dimensionless parameters were defined. The idea of computing fissure volume and matrix block size was presented but was not convincing.

A major contribution was made by Bourdet et al21,22 in 1983 when the pressure derivative plot was introduced as a tool to analyse pressure test data. The inter-porosity flow region was identified as a distinct feature and could be characterized by the \(\lambda \) and the \(\omega \) parameters. Both pseudo steady state and the transient matrix flow models could be analysed.

At the same time, Streltsova23 showed that the transient flow in the matrix did not cause an inflection point on the pressure profile on the
semilog plot. A transition straight line was proposed with a slope equal to one half the slope of the early or late time straight lines. This facilitated a Horner plot analysis.

All models presented thus far assumed the orthogonal system of uniform, continuous fractures, as proposed by Warren and Root. Matrix blocks in between the fractures were of the same size and shape.

Numerous studies in geology and well logging have shown the existence of nonuniformly fractured reservoirs. The Warren and Root model is an over-simplification of reality. There is need to develop a model which honors the heterogeneity in matrix block properties. Since the matrix-fracture interface area is dependent on the geometry of the matrix blocks, a distribution of matrix block geometries must be considered. The shape of the blocks does not have a significant effect on the response and hence a variability in block size shall be considered in this work.

Braester10 concluded block size does not significantly affect the drawdown pressure response of a fractured reservoir. Cinco et al11 suggested a discrete distribution of matrix block sizes with transient interporosity flow and showed the pressure derivative is significantly affected. Jalali-Yazdi and Belani12 show block size variability affects the pressure response markedly.

It would be more appropriate to lump all flow criteria into the flow coefficient χ and consider a distribution of matrix elements with different flow coefficients. The engineering concept of matrix blocks would be replaced by that of matrix volume elements with a variability in their contribution to interporosity flow. This idea has many strengths in modelling the reservoir and understanding its flow behaviour, and hence will be the subject of later research.
5 MODEL FORMULATION

The classical development of the diffusivity equation from mass balance in a fracture element yields:

\[
\frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial P_f}{\partial r}) = \frac{\phi_f c_f \mu}{k_f} \frac{\partial P_f}{\partial t} + Q_m, \tag{1}
\]

where \(P_f \) is the pressure in the fracture and \(Q_m \) is the interporosity flow source term. Eqn.(1) assumes:

- radial, cylindrical flow occurs in the fracture,
- reservoir fluid is slightly compressible and has constant properties,
- inertial and gravity effects can be ignored and Darcy's law is applicable, and
- rock properties are constant.

Formulation of the flow contribution term \(Q_m \) requires a reservoir model, since the geometrical distribution of the fractures governs interporosity flow. In a uniformly fractured reservoir where block size is constant, the flow contribution from a single block into the adjoining fracture depends upon the storativity, permeability, and the size of the block. Such models have been presented in the literature.\(^1-5\) In a nonuniformly fractured reservoir with a random distribution of matrix block size (Figs. 1,2), the matrix contribution is:

\[
Q_m = \int_{h_{\text{min}}}^{h_{\text{max}}} Q(h)f(h)dh, \tag{2}
\]

where \(Q(h) \) is the flow contribution from a block of size \(h \) and \(f(h) \) is the probability of occurrence of block size \(h \). The flow contribution \(Q(h) \) is specified by the mode of interporosity flow and the shape of the matrix block.

Note for a constant block size model, matrix block size distribution \(f(h) \) is a shifted Dirac delta function \(\delta(h-H) \):

\[
Q_m = \int_{h_{\text{min}}}^{h_{\text{max}}} \delta(h - H)Q(h)dh = Q(H), \tag{3}
\]
which is consistent with the Warren and Root3 and other single block size models.4,5

For reservoirs with intense fracturing, $f(h)$ is a positively skewed distribution ‘favoring’ small blocks, and for reservoirs with sparse fracturing, $f(h)$ is a negatively skewed distribution, ‘favoring’ large blocks.

A more general formulation of the source integral can account for variability in several matrix properties. For instance, a random variation in block permeability k_m and block size h, results in:

$$Q_m = \int_{h_{\text{min}}}^{h_{\text{max}}} \int_{k_{\text{min}}}^{k_{\text{max}}} Q(k_m, h) f(k_m, h) dk_m dh,$$

where $Q(k_m, h)$ is the flow contribution from a block of size h and permeability k_m and $f(k_m, h)$ is a joint probability distribution. This work addresses variability in matrix block size only and hence Eqn.(4) is not further pursued.
6 SOLUTION

Equations (1) and (2) are solved for slab matrix blocks for the initial and boundary conditions stated in the Appendix. The wellbore pressure response in the Laplace space is:

\[\bar{P}_D = \frac{K_0(x) + S_DxK_1(x)}{s[C_Ds(K_0(x) + S_DxK_1(x)) + \pi K_1(x)]}, \]

where \(s \) is the Laplace variable related to dimensionless time:

\[t_D = \frac{k_f t}{(\phi_f c_f + \phi_m c_m) \mu_B^2}, \]

and the argument \(\alpha = \sqrt{s g(s)} \).

For PSS:

\[g(s) = \omega_f + \omega_m \int_{h_{min}}^{h_{max}} \frac{3\lambda}{\omega_m \delta + 3\lambda} f(h_D) dh_D. \]

For USS:

\[g(s) = \omega_f + \int_{h_{min}}^{h_{max}} \sqrt{\frac{\omega_m \lambda}{\delta}} \tanh(\sqrt{\frac{\omega_m \delta}{\lambda}}) f(h_D) dh_D. \]

The dimensionless parameters are defined below:

\[P_{D_f} = \frac{2\pi k_f h_f}{q \mu B} (P_i - P_f), \]

\[P_{D_m} = \frac{2\pi k_f h_f}{q \mu B} (P_i - P_m), \]

\[\omega_m = \frac{\phi_m c_m}{(\phi_m c_m + \phi_f c_f)}, \]

\[\omega_f = \frac{\phi_f c_f}{(\phi_m c_m + \phi_f c_f)}, \]
The interporosity flow coefficient λ depends on h and hence is included in the integral in Eqns. (7) and (8); these equations collapse to the single block size case if $f(h_D)$ is a Dirac delta function.

The pressure response is markedly governed by the distribution function in Eqns. (7) and (8). Geologic studies of outcrops do not express observed fracture intensities in terms of block size, hence it is difficult to choose any particular shape of block size distribution. This work solves the cases of Uniform and Bimodal distributions.

\[
\lambda = \frac{k_m r_w^2}{k_f r^2}, \quad (13)
\]
\[
r_D = \frac{r}{r_w}, \quad (14)
\]
\[
\xi_D = \frac{\xi}{h}, \quad (15)
\]
\[
h_D = \frac{h}{h_{\text{max}}}. \quad (16)
\]
7 UNIFORM DISTRIBUTION

A distribution of interest is the uniform or rectangular distribution where all block sizes (h_{min} to h_{max}) have an equal chance of occurrence:

$$f(h) = \frac{1}{h_{\text{max}} - h_{\text{min}}},$$

(17)

with mean block size:

$$h_{\text{mean}} = \frac{h_{\text{min}} + h_{\text{max}}}{2},$$

(18)

and variance:

$$\sigma_h^2 = \frac{1}{12} (h_{\text{max}} - h_{\text{min}})^2.$$

(19)

The applicability of the uniform distribution is two-fold:

1. It should be used when the matrix block size distribution is unknown.

2. A sum of uniform distributions of small variance spread can approximate any distribution and hence the pressure response for other distributions can be obtained.

For PSS flow, Eqns. (7), (12)-(14) yield:

$$g(s) = \omega_f + \omega_m \frac{\sqrt{3\lambda_{\text{min}}/\lambda_{\text{max}}}}{1 - \sqrt{\lambda_{\text{min}}/\lambda_{\text{max}}}} \times$$

$$\left(\tan^{-1}\sqrt{3\lambda_{\text{max}}/\omega_m} - \tan^{-1}\sqrt{3\lambda_{\text{min}}/\omega_m}\right).$$

(20)

For USS flow, Eqns. (8), (12)-(14) yield:

$$g(s) = \omega_f + \frac{\omega_m \sqrt{\lambda_{\text{min}}/\lambda_{\text{max}}}}{2(1 - \sqrt{\lambda_{\text{min}}/\lambda_{\text{max}}})} \times$$

$$\int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} \frac{1}{\lambda} \tanh \sqrt{\frac{\omega_m}{\lambda}} d\lambda.$$

(21)

Eqn. (18) does not have a closed form analytical solution and requires numerical integration.
The block sizes h_{min} and h_{max} correspond to interporosity flow coefficients λ_{max} and λ_{min}, respectively:

$$\frac{\lambda_{\text{min}}}{\lambda_{\text{max}}} = \left(\frac{h_{\text{min}}}{h_{\text{max}}}
ight)^2.$$

(22)

The $\lambda_{\text{max}}/\lambda_{\text{min}}$ ratio governs the variance of the uniform distribution. As this ratio approaches unity, the uniform distribution approaches a Dirac delta function and hence the pressure response approaches the single block size response.
8 BIMODAL DISTRIBUTION

General tectonic stresses over a region can cause fracturing at a macro scale and associated breaking of the rock at a finer scale. This results in two controlling sets of matrix block sizes, which can be represented by a bimodal distribution. If the two modes of the distribution are equally probable (same height), then:

$$f(h_D) = \frac{1}{1 - \frac{h_1}{h_{\max}} + \frac{h_2}{h_{\max}} - \frac{h_3}{h_{\max}}}$$

where $h_1 < h_2 < h_3 < h_{\max}$ correspond to $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_{\min}$, respectively. The PSS solution for this distribution function is:

$$g(s) = \omega_f + \frac{\omega_m}{1 - \sqrt{\frac{2\lambda_{\min}}{\lambda_1}} + \sqrt{\frac{2\lambda_{\min}}{\lambda_2}} - \sqrt{\frac{2\lambda_{\min}}{\lambda_3}}} \sqrt{\frac{3\lambda_{\min}}{\omega_m s}} \times$$

$$\left(\tan^{-1}\sqrt{\frac{3\lambda_1}{\omega_m s}} - \tan^{-1}\sqrt{\frac{3\lambda_2}{\omega_m s}} + \tan^{-1}\sqrt{\frac{3\lambda_3}{\omega_m s}} - \tan^{-1}\sqrt{\frac{3\lambda_{\min}}{\omega_m s}}\right).$$

(24)
9 DISCUSSION

Figure (3) shows the pressure and pressure derivative response for uniform block size distributions of different variance spread (X ratio). X is kept constant at 10^{-5} and λ_{min} varies from 10^{-5} to 10^{-9} by an order of magnitude at each step. Figure 3 indicates:

1. In the limit λ_{min} approaches λ_{max} (or vice versa), the single block size response is obtained (Warren and Root3).

2. The interporosity flow region on the derivative curve shows distinctly the effect of the variation in block size. The contribution from each block size affects the pressure at a different point in time depending on the interporosity flow coefficient, causing a stretching of the derivative curve. The change from the characteristic 'peaked valley' to a stretched valley with more features, is hence dependent on the block size distribution.

3. The beginning of the late time semi-log straight line ($P'_D = 0.5$) is inversely related to λ_{min} (slowest contributing block), with an approximate relation:

$$T_{DB} \approx \frac{1}{\lambda_{\text{min}}}. \quad (25)$$

The solution was investigated for other values of λ_{max}, varying X ratio. Figure (4) shows the pressure derivative response for X of 10^{-4} and X ratios of 1 to 10000. Similarly, Fig.(5) shows the response for λ_{max} of 10^{-6} and the same X ratio values. Identical derivative profiles are obtained for a given ω_m and X ratio; only the placement of the profile in time is governed by the magnitude of the flow coefficients.

Figure (6) illustrates the response for a range of matrix storativity (ω_m) for $\lambda_{\text{max}} = 10^{-5}$ and $\lambda_{\text{min}} = 10^{-7}$. The 'stretched' transition curve characterizes the variance of the distribution function as noted in Fig.(3). Also, $P'_{D_{\text{min}}}$ and $T_{D_{\text{p}}}$ (the coordinates of the point of inflection) increase with decreasing ω.

The response was closely studied for the inflection points in the three cases of Figs. 3,4,5. The data is presented in Tables 1,2,3.
Figure (7) is a correlation of slope ratio (SR) and \(w \), and \(\lambda_{\text{min}} / \lambda_{\text{max}} \). SR is the ratio of semi-log slope at the point of inflection and the early time or late time semi-log slope, \(\text{SR} = P'_{D_{\text{min}}} / 0.5 \). \(\text{SR} \) is independent of the magnitude of \(\lambda_{\text{min}} \) and \(\lambda_{\text{max}} \).

Figure (8) is a correlation of \(T_{D_E} \) and \(\lambda_{\text{min}} \) as indicated by Eqn. (22).

Figure (9) indicates the time at which the transition curve begins, \(T_{D_E} \), is a dominant function of \(\lambda_{\text{max}} \) but also varies with the variance of the distribution function (\(\lambda \) ratio).

Figure (10) illustrates the time coordinate of the point of inflection, \(T^*_D \), depends on the magnitude of the interporosity flow coefficients. However, the ratio \(T_{D_E} / T^*_D \) is a function of \(w \) and \(\lambda \) ratio and not of the \(\lambda \) values.

Figure (11) illustrates the effect of wellbore storage on the pressure response. Flow tests where early time data may be lost should be run long enough to obtain \(T_{D_E} \).

Figure (12) exhibits the pressure response for the unsteady state mode of interporosity flow. The \(\lambda \) distribution is the same as that of Fig. (3) but \(w \) is 0.99. The features of Fig. (10) are similar to those of the pseudo-steady state response (Fig. 3), although less pronounced.

The relations illustrated above can be used to estimate \(\omega_m \), \(\lambda_{\text{min}} \), and \(\lambda \) from pressure transient data. Alternatively, use of the proposed solution (Eqns. 5, 17, 18) in nonlinear regression of pressure data yields the reservoir parameters.

Figures (13) and (14) illustrate the pressure response for a bimodal distribution with the parameters, \(\lambda_1 = 10^{-5}, \lambda_2 = 0.8 \times 10^{-5}, \lambda_3 = 10^{-6} \) and \(\lambda_{\text{min}} = 0.8 \times 10^{-6} \). Figure (15) exhibits the response for a bimodal distribution with \(\lambda_1 = 10^{-5}, \lambda_2 = 0.8 \times 10^{-5}, \lambda_3 = 10^{-7} \) and \(\lambda_{\text{min}} = 0.8 \times 10^{-7} \). Figures (16) and (17) exhibit the response for a bimodal distribution with \(\lambda_1 = 10^{-6}, \lambda_2 = 0.8 \times 10^{-5}, \lambda_3 = 10^{-8} \) and \(\lambda_{\text{min}} = 0.8 \times 10^{-8} \). Figure (18) exhibits the response for a bimodal distribution with \(\lambda_1 = 10^{-5}, \lambda_2 = 0.8 \times 10^{-5}, \lambda_3 = 10^{-9} \) and \(\lambda_{\text{min}} = 0.8 \times 10^{-9} \).

When the two modes of the distribution are very close, the response is similar to that of the unimodal uniform distribution corresponding to the larger \(\lambda \) mode. As the separation between the two modes increases, the pressure response deviates from that of the unimodal distribution. Beyond a certain degree of separation, the derivative plot character due to the higher \(\lambda \) mode is suppressed.
The solutions of the unimodal and bimodal distributions can be extended to multimodal distributions, which may be obtained from geologic information. The procedure would be to estimate a shape of the distribution from well-log data and compute the parameters using the pressure response.
10 CONCLUSIONS

1. A robust formulation of pressure transient response in nonuniformly fractured reservoirs is presented.

2. The matrix block size distribution for a uniformly fractured reservoir is a Dirac delta function and results in a sharp pressure response.

3. The pressure response of a nonuniformly fractured reservoir becomes less pronounced with an increase in the variance of the matrix block size distribution.

4. The pressure derivative curve for uniform distribution can be analysed to estimate the reservoir parameters.
11 NOMENCLATURE

\[B = \text{formation volume factor, RB/STB} \]
\[c = \text{compressibility, } psi^{-1} \]
\[c_f = \text{fracture total compressibility, } psi^{-1} \]
\[c_m = \text{matrix total compressibility, } psi^{-1} \]
\[C_D = \text{wellbore storage coefficient, dimensionless} \]
\[f(h) = \text{block size distribution function, } ft^{-1} \]
\[f(h_D) = \text{block size distribution function, dimensionless} \]
\[f(k_m, h) = \text{joint probability distribution function, } ft^{-1}.md^{-1} \]
\[g(s) = \text{a parameter in the Bessel function argument} \]
\[h = \text{matrix block size variable, ft} \]
\[h_D = \text{matrix block size, dimensionless} \]
\[h_f = \text{fracture thickness, ft} \]
\[h_{\min} = \text{minimum block size, uniform distribution, ft} \]
\[h_{\max} = \text{maximum block size, uniform distribution, ft} \]
\[h_{\text{mean}} = \text{mean block size, uniform distribution, ft} \]
\[h_1, h_2, h_3 = \text{block size bounds for bimodal distribution, ft} \]
\[H = \text{constant matrix block size, ft} \]
\[k_f = \text{fracture permeability, md} \]
\[k_m = \text{matrix permeability, md} \]
\(K_0(x) \) = modified Bessel function, second kind, zero order

\(K_1(x) \) = modified Bessel function, second kind, first order

\(P_{D_f} \) = fracture pressure, dimensionless

\(P_{D_m} \) = matrix pressure, dimensionless

\(P_{D_w} \) = Laplace transformed wellbore pressure response

\(P_f \) = fracture fluid pressure, psi

\(P_i \) = initial pressure, psi

\(P_m \) = matrix fluid pressure, psi

\(\text{PSS} \) = pseudo-steady state

\(q \) = volumetric flow rate, STB/D

\(Q(h) \) = flow contribution of matrix size \(h \), hour-

\(Q(k_m, h) \) = flow contribution of matrix size \(h \) and permeability \(k_m \), hour-

\(Q_m \) = cumulative matrix flow contribution, hour-

\(r \) = radial coordinate, ft

\(r_D \) = radial coordinate, dimensionless

\(r_w \) = wellbore radius, ft

\(s \) = Laplace parameter

\(S_D \) = skin factor, dimensionless

\(\text{SR} \) = minimum slope ratio, dimensionless

\(t \) = time, hours

\(t_D \) = time, dimensionless

\(T_{D_B} \) = time transition period begins, dimensionless

\(T_{D_B} \) = time transition period ends, dimensionless

\(T_{D_B} \) = time of minimum slope, dimensionless

20
\[\text{SI METRIC CONVERSION FACTORS} \]

\begin{align*}
\text{bbl} & \times \ 1.589873 \times 10^{-1} = m^3 \\
\text{cp} & \times \ 1.0 \times 10^3 = \text{p.a. s} \\
\text{ft} & \times \ 3.048 \times 10^{-1} = m \\
\text{psi} & \times \ 6.894757 \times 10^{-1} = \text{kpa} \\
\text{psi}^{-1} & \times \ 1.450 \times 10^1 = \text{kpa}^{-1}
\end{align*}

* Conversion factor is exact.
12 BIBLIOGRAPHY

A SOLUTIONS

Combining equations (1) and (2) from the text,

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial P_f}{\partial r} \right) = \frac{\phi_f c_f \mu}{k_f} \frac{\partial P_f}{\partial t} + \int_{h_{\text{min}}}^{h_{\text{max}}} Q(h) f(h) dh. \quad (1)
\]

Pseudo-Steady State

Considering the direction of flow as that of the normal to the matrix-fracture interface, material balance yields:

\[
\frac{\partial^2 P_m}{\partial \xi^2} = \frac{\phi_m c_m \mu}{k_m} \frac{\partial P_m}{\partial t} \quad (2)
\]

For pseudo-steady state, the pressure gradient is a constant in space, hence:

\[
\frac{\partial^2 P_m}{\partial \xi^2} = \frac{\phi_m c_m \mu}{k_m} \frac{\partial P_m}{\partial t} = C(t) \quad (3)
\]

Integrating twice with respect to \(\xi \),

\[
\frac{\partial P_m}{\partial \xi} = C(t) \xi + A, \quad (4)
\]

and,

\[
P_m = C(t) \frac{\xi^2}{2} + A\xi + B, \quad (5)
\]

where \(A \) and \(B \) are constants. Applying the boundary conditions in \(\xi \),

\[
P_{D_m} = P_{D_f} \quad \text{at } \xi_D = 0,
\]

\[
\frac{\partial P_{D_m}}{\partial \xi_D} = 0 \quad \text{at } \xi_D = 1,
\]

\[
B = P_f \quad (6)
\]

\[
A = -hC(t) \quad (7)
\]

From Darcy's law at the matrix-fracture interface,

\[
Q(h) = \frac{-k_m \frac{\partial P_m}{\partial \xi}}{\mu h} \bigg|_{\text{interface}} \quad (8)
\]
which yields,

\[Q(h) = \phi_m c_m \frac{\partial P_m}{\partial t}. \] \hspace{1cm} (9)

Averaging the expression for \(P_m \) from 0 to \(h \), Eqn.(5)

\[\frac{\partial P_m}{\partial t} = \frac{3k_m}{\phi_m c_m \mu h^2} (P_f - P_m). \] \hspace{1cm} (10)

Substituting the dimensionless parameters as defined before in the text, the equation for \(\text{PSS} \) flow becomes,

\[\frac{\partial^2 P_{D_f}}{\partial r_D^2} + \frac{1}{r_D} \frac{\partial P_{D_f}}{\partial r_D} = \omega_f \frac{\partial P_{D_f}}{\partial t_D} + \omega_m \int_{h_{\text{min}}}^{h_{\text{max}}} \frac{\partial P_{D_m}}{\partial t_D} f(h_D) dh_D, \] \hspace{1cm} (11)

and in the matrix,

\[\frac{\partial P_{D_m}}{\partial t_D} = \frac{3\lambda}{\omega_m} (P_{D_f} - P_{D_m}). \] \hspace{1cm} (12)

To solve the equations so obtained, (11) and (12), we specify the following initial and boundary conditions:

\[P_{D_f} = P_{D_m} = 0 \hspace{1cm} t_D = 0. \]

Boundary conditions in the radial direction:

\[\lim_{r_D \to \infty} P_{D_f} = 0, \]

\[\frac{\partial P_{D_f}}{\partial r_D} \bigg|_{r_D=1} = -1, \]

\[C_D \frac{\partial P_{D_m}}{\partial t_D} - (\frac{\partial P_{D_f}}{\partial r_D})_{r_D=1} = 1, \]

\[P_{D_m} = [P_{D_f} - S_D (\frac{P_{D_f}}{r_D})]_{r_D=1}. \]

Transforming this set of equations to Laplace space, and rearranging,

\[r_D^2 \frac{\partial^2 \bar{P}_{D_f}}{\partial r_D^2} + r_D \frac{\partial \bar{P}_{D_f}}{\partial r_D} - r_D^2 s g(s) \bar{P}_{D_f} = 0, \] \hspace{1cm} (13)
where,

\[g(s) = \omega_f + \omega_m \int_{k_{min}}^{1} \frac{3\lambda}{\omega_m s + 3\lambda} f(h_D) dh_D \] \hspace{1cm} (14)

The solution to this equation is the double porosity solution,

\[\overline{P}_{D_0} = \frac{K_0(x) + S_D x K_1(x)}{s[C_D s(K_0(x) + S_D x K_1(x))] + x K_1(x)} \] \hspace{1cm} (15)
Unsteady State

A similar procedure can be followed for the unsteady state case, using the matrix flow equation,

\[Q(h) = -\frac{k_m \partial P_m}{\mu h} \left. \right|_{interface} \]

(16)

and the material balance equation

\[\frac{\partial^2 P_m}{\partial \xi^2} = \frac{\phi_m c_m \mu \partial \theta_m}{k_m} \left. \right|_{t=0} \]

(17)

The initial and boundary conditions are exactly the same as the PSS case. Substituting dimensionless parameters, and transforming to Laplace domain,

\[\frac{\partial^2 \bar{P}_{DL}}{\partial r_D^2} + \frac{1}{r_D} \frac{\partial \bar{P}_{DL}}{\partial r_D} = \omega_f \lambda \bar{P}_{DL} - \int_{h_{\min}}^{h_{\max}} \lambda \frac{\partial \bar{P}_{DL}}{\partial \xi_D} \left|_{\xi_D=0} \right. f(h_D) dh_D \]

(18)

and,

\[\frac{\partial^2 \bar{P}_{Dm}}{\partial \xi_D^2} = \frac{\omega_{m\theta}}{\lambda} \bar{P}_{Dm} \]

(19)

Solving equation (19) with the boundary conditions in \(\xi_D \) and substituting in eqn (18), we get a form similar to PSS

\[r_D^2 \frac{\partial^2 \bar{P}_{DL}}{\partial r_D^2} + r_D \frac{\partial \bar{P}_{DL}}{\partial r_D} - r_D^2 \bar{g}(s) \bar{P}_{DL} = 0, \]

(20)

where,

\[g(s) = \omega_f + \int_{h_{\min}}^{h_{\max}} \sqrt{\frac{\omega_{m\theta}}{\omega_f}} \tanh(\sqrt{\frac{\omega_{m\theta}}{\omega_f}} f(h_D) dh_D \]

(21)

The solution is the same as eqn (15) with a different \(g(s) \).
B SOFTWARE PROGRAMS

.

Program for Pressure response to Uniform Distributions

program main

implicit real*8 (a-h,p-z)
dimension pda(300),dpda(300),d2pda(300),tda(300)
common m,red,sk,cbar,slmin,slmax,omegm,ssn,fs,sfs
open(unit=3,file='datp')
rewind(unit=3)
n=10
m=1
slmax = 1.0e-6
omegm = 0.95
slmin = 0.8e-6
print *, lambda(max) =
read *, slmax
print *, lambda(min) =
read *, slmin
print *, omega =
read *, omegm
print *, cbar =
read , cbar
ssn = 0.0
sk = -2.3
td=0.1
do 10 i=1,250
call pwd(td,n,pd,dpd,d2pd)
tda(i) = td
pda(i) = pd
dpda(i) = dpd*td
d2pda(i) = d2pd*td*td + dpd*td
d=td*td
10 continue
write(3,*),tda(i),pda(i)
do 20 i=1,250
write(3,50),tda(i),pda(i)
20 continue
write(3,*),tda(i),dpda(i)
do 30 i=1,250
write(3,50),tda(i),dpda(i)
30 continue
c write(3,*)
do 40 i=1,250
c d2pda(i) = (dpda(i+1)-dpda(i))/(tda(i+1)-tda(i))*(tda(i+1)+tda(i))
c write(3,50),tda(i),d2pda(i)
40 continue
50 format(2f20.4)
70 stop
end

C THE STEHFEST ALGORITHM
SUBROUTINE PWD(TW,N,PD,dpd,d2pd)
 THIS FUNCTION COMPUTES NUMERICALLY THE LAPLACE TRANSFORM
 INVERSE OF F(S).

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION G(50),V(50),H(25)

NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
F(S).
IF (N.EQ.M) GO TO 17
M=N
DLOGTW = 0.6931471805599
NH = N/2

G(1) = 1
DO 1 I = 2, N
 G(I) = G(I-1) * I
 CONTINUE

H(1) = 2.*G(NH-1)/G(NH)
DO 6 I = 2, NH
 FI = I
 IF (I-NH) GO TO 4, 5, 6
 H(I) = FI**NH * G(2*I) / (G(I)*G(I-1))
 GO TO 6
 H(I) = FI**NH * G(2*I) / (G(I)*G(I-1))
 CONTINUE

S(N) = 2*(NH-NH/2*2) - 1
THE REST OF THE S(N)'S ARE CALCULATED IN THE MAIN RUTINE.

DO 7 I = 1, N
 V(I) = 0.
 THE LIMITS FOR K ARE ESTABLISHED.
 THE LOWER LIMIT IS K1 = INTEG((I+1/2))
 K1 = (I+1)/2
 THE UPPER LIMIT IS K2 = MIN(I,N/2)
 K2 = I
 IF (K2-NH) GO TO 8, 8, 9
 K2 = NH
 THE SUMMATION TERM IN V(I) IS CALCULATED.
 DO 10 K = K1, K2
 IF (2*K-I) 12, 13, 12
 IF (I-K) 11, 14, 11
 V(I) = V(I) + H(K)/G(I-K)*G(2*K-I)
 GO TO 10
 V(I) = V(I) + H(K)/G(I-K)
 GO TO 10
 V(I) = V(I) + H(K)/G(2*K-I)
 CONTINUE
C

THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING
ACCORDING TO SN.

V(I)=SN*V(I)

THE TERM SN CHANGES ITS SIGN EACH ITERATION.

CONTINUE

THE NUMERICAL APPROXIMATION IS CALCULATED.

A=DLOGTW/TD
PD=0
dpd = 0.
d2pd = 0.
DO 15 I=1,N
ARG=A*I
P2=PD+V(I)*plap (ARG,sk,cbar,omegm,ssn,slmax,slmin)
dpd=dpd+v(I)*plapd (arg,sk,cbar,omegm,ssn,slmax,slmin)
d2pd=d2pd+v(I)*plapd2(arg,sk,cbar,omegm,ssn,slmax,slmin)
CONTINUE
CONTINUE
P2=P2*A
dpd=dpd*A
d2pd=d2pd*A
RETURN
END

function plap(s,sk,cbar,omegm,ssn,slmax,slmin)

implicit double precision (a-h,o-z)
double precision k0,k1
argmin = dsqrt(3*slmin/omegm/s)
argmax = dsqrt(3*slmax/omegm/s)
hratio = dsqrt(slmin/slmax)
c
fs = (1.0-omegm)-(omegm*argmin* (datan (argmin)-datan (argmax)))/(1-hratio)
argl = omegm*argmin* (datan (argmin)-datan (argmax))/(1-hratio)
fs = 1.0 - omegm - argl
sf=s*fs
x=dsqrt(fs)
y=dsqrt(fs)
k1 = dbsk1(x)
k0 = dbsk0(x)
plap=((k0 +(sk*x*k1)))/(s*((x*k1)+(cbar*s*(k0+sk*x*k1))))
return
end

function plapd(s,sk,cbar,omegm,ssn,slmax,slmin)

implicit double precision (a-h,o-z)
double precision k0,k1
argmin = dsqrt(3*slmin/omegm/s)
argmax = dsqrt(3*slmax/omegm/s)
hratio = dsqrt(slmin/slmax)
c
fs = (1.0-omegm)-(omegm*argmin* (datan (argmin)-datan (argmax)))/(1-hratio)
argl = omegm*argmin* (datan (argmin)-datan (argmax))/(1-hratio)
fs = 1.0 - omegm - argl
sf=s*fs
x=dsqrt(fs)
y=dsqrt(fs)
k1 = dbsk1(x)
k0 = dbsk0(x)
plapd=((k0 +(sk*x*k1)))/(1*(x*k1)+(cbar*s*(k0+sk*x*k1))))
return
end

function plapd2(s,sk,cbar,omegm,ssr,slmax,slmin)
implicit double precision (a-h,o-z)

double precision k0, kl

argmin = dsqrt(3*slmin/omegm/s)
argmax = dsqrt(3*slmax/omegm/s)
hratio = dsqrt(slmin/slmax)

fs = (1.0 - omegm) - (omegm*argmin* (datan(argmin)-datan(argmax)))/(1-hratio)
arg1 = omegm*argmin* (datan(argmin)-datan(argmax)))/(1-hratio)
fs = 1.0 - omegm - arg1
sfs = s*fs
x = dsqrt(sfs)
y = dsqrt(sfs)
kl = dbsk1(x)
k0 = dbsk0 (x)
plapd2 = s*((k0 + (sk*x*kl))/(1*(((x*kl)+(cbar*s*(k0+sk*x*kl))))
return
end
FI=I
IF (I-NH) 4, 5, 6
H(I)=FI**NH*G(2*I)/(G(NH-I)**G(I)**G(I-1))
GO TO 6
H(I)=FI**NH*G(2*I)/(G(I)**G(I-1))
CONTINUE
C
THE TERMS (-1)**NH+1 ARE CALCULATED.
FIRST THE TERM FOR I=1
SN=2**NH-NH/2+1
C
THE REST OF THE SN’S ARECALCULATED IN THE MAIN RUTINE.
C
THE ARRAY V(I) IS CALCULATED.
DO 7 I=1, N
C
FIRST SET V(I)=0
V(I)=0.
C
THE LIMITS FOR K ARE ESTABLISHED.
THE LOWER LIMIT IS K1=INTEG((I+1/2))
K1=(I+1)/2
C
THE UPPER LIMIT IS K2=MIN(I, N/2)
K2=I
IF (K2-NH) 8, 8, 9
K2=NH
C
THE SUMMATION TERM IN V(I) IS CALCULATED.
DO 10 K=K1, K2
IF (2*K-I) 12, 13, 12
IF (I-K) 11, 14, 11
V(I)=V(I)+H(K)/(G(I-K)**G(2*K-I))
GO TO 10
V(I)=V(I)+H(K)/(G(I-K))
GO TO 10
V(I)=V(I)+H(K)/(G(2*K-I))
CONTINUE
C
THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING
ACCORDING TO SN.
V(I)=SN*V(I)
C
THE TERM SN CHANGES ITS SIGN EACH ITERATION.
$SN=-SN$
CONTINUE
C
THE NUMERICAL APPROXIMATION IS CALCULATED.
A=DLOGTW/TD
PD=0.
dpd = 0.
DO 15 I=1, N
ARG=A*I
PD=PD+V(I)*PLAP(ARG, sk, cbar, omegm, ssn, sll, s12, s13, s14)
dpd=dpd+V(I)*PLAPD(ARG, sk, cbar, omegm, ssn, sll, s12, s13, s14)
CONTINUE
PD=PD*A
dpd=dpd*A
RETURN
END

function plap(s, sk, cbar, omegm, ssn, sll, s12, s13, s14)
implicit real*8 (a-h,o-z)
real*8 k0, k1
double precision mmbsk0, mmbsk1
integer iopt, ier
iopt=1
arg1 = dsqrt(3*s11/omegm/s)
arg2 = dsqrt(3*s12/omegm/s)
arg3 = dsqrt(3*s13/omegm/s)
arg4 = dsqrt(3*s14/omegm/s)
hlrat = dsqrt(s11/s14)
h2rat = dsqrt(s11/s13)
h3rat = dsqrt(s11/s12)
denom = 1-h3rat+h2rat-hlrat
c fs = (1.0-omegm-omgm*arg1*(datan(arg1)-datan(arg2)))/denom
arg12 = omgm*arg1*(datan(arg1)-datan(arg2))/denom
arg34 = omgm*arg1*(datan(arg3)-datan(arg4))/denom
fs = 1.0 - omgm - arg12 - arg34
sfs=s*fs
x=dsqrt(sfs)
y=dsqrt(sfs)
k1 = mmbsk1 (iopt,x,ier)
k0 = mmbsk0 (iopt,x,ier)
plapd=(k0+(sk*x*k1))/(s*((x*k1)+(cbar*s*(k0+sk*x*k1))))
return
end

function plapd(s, sk, cbar, omgm, ssn, sll, sl2, sl3, sl4)
implicit real*8 (a-h, o-z)
real*8 k0, k1
double precision mmbsk0, mmbsk1
integer iopt, ier
iopt=1
arg1 = dsqrt(3*s11/omegm/s)
arg2 = dsqrt(3*s12/omegm/s)
arg3 = dsqrt(3*s13/omegm/s)
arg4 = dsqrt(3*s14/omegm/s)
hlrat = dsqrt(s11/s14)
h2rat = dsqrt(s11/s13)
h3rat = dsqrt(s11/s12)
denom = 1-h3rat+h2rat-hlrat
c fs = (1.0-omegm-omgm*arg1*(datan(arg1)-datan(arg2)))/denom
arg12 = omgm*arg1*(datan(arg1)-datan(arg2))/denom
arg34 = omgm*arg1*(datan(arg3)-datan(arg4))/denom
fs = 1.0 - omgm - arg12 - arg34
sfs=s*fs
x=dsqrt(sfs)
y=dsqrt(sfs)
k1 = mmbsk1 (iopt,x,ier)
k0 = mmbsk0 (iopt,x,ier)
plapd=(k0+(sk*x*k1))/(s*((x*k1)+(cbar*s*(k0+sk*x*k1))))
return
end
Program for Pressure response to Uniform Distribution (Unsteady State)

program main

implicit real*8 (a-h, i-l)
dimension pda(300), dpda(300), d2pda(300), tda(300)
common m, red, sk, cbar, slmin, slmax, omegm, ssn, fs, sfs, ans
open(unit=3, file='datp')
rewind(unit=3)

n=10
m=1
slmax = 1.0e-6
omegm = 0.95
slmin = 0.8e-6
print *, 'lambda(max) = ',
read *, slmax
print *, 'lambda(min) = ',
read *, slmin
print *, 'omega = ',
read *, omegm
ssn = 0.0
sk = 0.0
cbar = 0.0
td=0.1

do 10 i=1,250
 call pwd(td, n, pd, dpd)
 tda(i) = td
 pda(i) = pd
 dpda(i) = dpd*td
 d2pda(i) = d2pd*td*td + dpd*td
 td=td*1.1
10 continue
 write(3, *) 250
 do 20 i=1,250
 write(3, 50) tda(i), pda(i)
20 continue
 write(3, *) 250
 do 30 i=1,250
 write(3, 50) tda(i), dpda(i)
30 continue
 write(3, *) 250
 do 40 i=1,250
 d2pda(i) = (dpda(i+1)-dpda(i))/(tda(i+1)-tda(i))*(tda(i+1)+tda(i))
40 continue
 format(2f20.4)
 stop
end

THE STEHFEST ALGORITHM

SUBROUTINE PWD(TD, N, PD, dpd)
THIS FUNCTION COMPUTES NUMERICALLY THE LAPLACE TRANSFORM
INVERSE OF F(S).

IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION G(50), V(50), H(25)
external f
common m, red, sk, cbar, slmin, slmax, omegm, ssn, fs, sfs, ans

NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM GOES DIRECTLY TO
THE END OF THE SUBROUTINE TO CALCULATE F(S).
IF (N .EQ. M) GO TO 17

M=N
THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G.

\[G(1) = 1 \]

\[\text{DO 1 } I = 2, N \]
\[G(I) = G(I-1) \times I \]

CONTINUE

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.

\[H(1) = 2 \times G(NH-1) \]

\[\text{DO 6 } I = 2, NH \]
\[F(I) = I \]

\[\text{IF } (I-NH) \text{ GO TO 6} \]
\[H(I) = F(I)^{NH} \times G(2*I) / (G(2*I) \times G(I)) \]

CONTINUE

THE TERMS \((-1)^{NH+1}\) ARE CALCULATED.

FIRST THE TERM FOR \(I=1\)

\[SN = 2 \times (NH-NH/2 \times 2) - 1 \]

THE REST OF THE SN'S ARE CALCULATED IN THE MAIN ROUTINE.

THE ARRAY V(I) IS CALCULATED.

\[\text{DO 7 } I = 1, N \]
\[\text{FIRST SET } V(I) = 0 \]

V(I) = 0.

THE LIMITS FOR K ARE ESTABLISHED.

THE LOWER LIMIT IS \(K1 = \text{INTEG}((I+1/2))\)

\[K1 = (I+1)/2 \]

THE UPPER LIMIT IS \(K2 = \text{MIN}(1, N/2)\)

\[K2 = I \]

\[\text{IF } (K2-NH) \text{ GO TO 10} \]

\[K2 = NH \]

THE SUMMATION TERM IN V(I) IS CALCULATED.

\[\text{DO 10 } K = K1, K2 \]
\[\text{IF } (2*K-I) \text{ GO TO 10} \]
\[\text{IF } (I-K) \text{ GO TO 10} \]
\[V(I) = V(I) + H(K) / (G(I-K) \times G(2*K-I)) \]

CONTINUE

THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING ACCORDING TO SN.

\[V(I) = SN \times V(I) \]

THE TERM SN CHANGES ITS SIGN EACH ITERATION.

\[SN = -SN \]

CONTINUE

THE NUMERICAL APPROXIMATION IS CALCULATED.

\[A = \text{DLOGTW}/TD \]
\[PD = 0 \]
\[dPd = 0 \]

\[d2Pd = 0 \]

\[\text{DO 15 } I = 1, N \]
CONTINUE
PD = PD + V(I)*plap(ARG, sk, cbar, omegm, ssn, slmax, slmin, ans)
dpd = dpd + v(i)*plapd (arg, sk, cbar, omegm, ssn, slmax, slmin, ans)
d2pd = d2pd + v(i)*plapd2 (arg, sk, cbar, omegm, ssn, slmax, slmin, ans)

function plap(s, sk, cbar, omegm, ssn, slmax, slmin, ans)

function plapd(s, sk, cbar, omegm, ssn, slmax, slmin, ans)

function plapd2(s, sk, cbar, omegm, ssn, slmax, slmin, ans)
function f(x)
 implicit real*8 (a-h,o-z)
 f = dtanh(x)/x
 return
end
Fig. 1 Non-Uniformly Fractured Reservoir

Fig. 2 - Matrix Block Size Distribution
Fig. 3 - Lambda Range 1e-5 to 1e-9
Derivative Curves Uniform Distribution

Fig. 4 - Lambda Range 1e-4 to 1e-8
Derivative Curves Uniform Distribution

Fig. 5 - Lambda range $1e^{-6}$ to $1e^{-10}$
Fig. 6
Fig. 9

Fig. 10
Fig. 11
Fig. 12

PD-TD & PD'-TD Uniform Distr. Unsteady State Soln.

Pd, dP/dlnTd

Lambda Ratio

\(\text{lambda(max)} = 1 \times 10^{-5} \)
\(\text{omega(m)} = 0.99 \)
BIMODAL DISTRIBUTION

\[f(h) \]

- \(h_1 - \lambda_{\text{max}} \)
- \(h_4 - \lambda_{\text{min}} \)

Fig. 13

PD-TD & Derivative Curves BIMODAL Distribution

\[P_d, \frac{dP_d}{d\ln Td} \]

\[\omega(m) = 0.95 \]

Fig. 14
Fig. 15
Fig. 16

Fig. 17
PD-TD & Derivative Curves BIMODAL Distribution

Fig. 18